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Results arising from the treatment  of magnetic scattering of neutrons, taking due account of the 
possibility of polarization of the neutron beam, indicate that  the usual expressiorLs for primary 
and secondary extinction must be modified in certain cases. Extinction, particularly primary 
extinction, will be generally more severe for reflections which have both nuclear and magnetic 
contributions than for either pure nuclear or pure magnetic reflections. Formulas and curves are 
presented for primary and secondary extinction corrections which are applicable to both mag- 
netized and unmagnetized ferromagnetic or aatiferromagnetic crystals. Some of the results obtained 
may be conveniently used to determine relative amounts of pr imary and secondary extinction, 
and consequently both mosaic block size and angular distribution. ~¢Iany of the calculations are of 
interest in predicting the effects of extinction on experiments designed either to produce or use 
polarized neutron beams. 

The precession of the neutron polarization axis about the magnetic axis can affect the reflected 
intensity if extinction is severe. This effect is discussed briefly and is shown to be serious only for 
magnetized crystals. 

The appendix discusses the necessary changes in the scattering formulas if all the spins in the 
unit cell do not lie along a unique magnetic axis. 

In troduct ion  

In  a recent  paper  (Hamilton,  1957) the au thor  has  
discussed secondary extinction corrections for crystals 
of a rb i t r a ry  geometrical  cross-section. In  the  example 
which was chosen to i l lustrate some of the  points 
discussed in t h a t  p a p e r - - a  synthet ic  single crystal  of 
magnet i te  which showed par t icular ly  severe extinction 
- - i t  was noted t h a t  several of the  reflections which 
had  large magnet ic  contributions did not  give as good 
a fit  to the  extinction curves as did the pure nuclear 
reflections. An empirical ext inct ion curve was found 
to give a sa t isfactory fit  to the observed intensities of 
the  nuclear  reflections, but  the intensities of m a n y  of 
the  mixed reflections were considerably lower t han  
this curve would predict.  This lowered intensi ty  could 
not  be accounted for by  any  reasonable changes in 
the  paramete rs  describing the magnetic  s t ructure,  nor 
in the  form factor  and sa tura t ion  curves. Pre l iminary  
considerations indicated t ha t  this behavior  could be 
explained by  a combinat ion of polarization and ex- 

* Research performed under the auspices of the U.S. 
Atomic Energy Commission. 

t inction effects, and the  present  paper  is a detailed 
elaborat ion of t h a t  point  of view. 

Following Halpern  & Johnson  (1939), we m a y  write 
the wave funct ion for the incident neut ron beam as 

V2o = (2~Mo/hk)½ exp [ i k . r ] z s ,  (1) 

where k is the  wave vector 2reP/h with P the  neut ron 
momentum,  r is a position vector, M 0 is the  neut ron 
mass, and Z8 is the  neutron spin function. The scat- 
tered wave from a single oriented magnet ic  ion m a y  
then be represented by 

Y~H = (2zcMo/hk) ½r-1 exp [ikr](b+pq.s)z~ , (2) 

provided t h a t  there is no change in the spin s ta te  of 
the scat ter ing ion. The nuclear and magnetic  scat- 
tering ampli tudes are given by b and p respectively 
with p defined as 

p = (e2rnS/mc~)f. (3) 

Here 7n is the neutron magnet ic  moment  in nuclear  
magnetons,  S is the  spin of the  scat ter ing ion, m is 
the mass of the  electron, f is a form factor,  and c and e 
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have the usual  meanings.  The spin operator s has  the 
following properties : 

s x ~  = ( 1 / 2 ) f l ,  s u a  = (i/2)fl, s z ~  = ( 1 / 2 ) ~ ,  } 

s ~ f l  = (1 /2)c~ ,  sufl = - ( i / 2 ) a ,  sz f l  = - ( 1 / 2 ) f l  , _ (4)  

where ~ and fl are the eigenfunctions of s~. Note tha t  
any  spin function m a y  be described as 

y8 = a a  +bfl  (5) 

with complex a and b such tha t  Z~ is normalized:  

[al 2 +  Ibl ~ = 1 . (6)  

No general i ty is lost by  taking a to be real, and we 
shall do so. The polarization direction corresponding 
to X~ is defined by the polar angles 0s and ~v~ satisfying 

cot (½0~) = lal /Ibl ,  (7) 

tan  ~v~ = ( b - b * ) / i ( b + b * ) .  (8) 

Note tha t  we m a y  also write 

cos 0~ = lal ~ -  lbl S -- P ,  (9) 

where P is defined as the polar izat ion  (relative to the 
z axis). This m a y  also be wri t ten as 

P = ( I ~ - I ~ ) / ( I ~ , + I ~ ) ,  (10) 

where I~ and  I~ are the intensit ies of the two beam 
components with polarization directions corresponding 
to c~ and ft. The magnet ic  interaction vector q is 
defined by 

q = e ( E . K ) - K ,  (11)  

where e, the scattering vector, is a uni t  vector per- 
pendicular  to the scattering plane and K is a uni t  
vector in the ionic spin direction, i.e., the magnetiza- 
t ion direction. Note tha t  q lies in the plane of e and K, 
and is orthogonal to e. The magni tude  of q is given by 

q2 = sin S w, (12) 

where w is the angle between ~ and K. 
Equat ion  (2) and the following equations may  also 

be interpreted as applying to a structure containing 
m a n y  magnetic  ions provided tha t  q remains the same 
or only changes sign for all ions, i.e., the ionic spins 
are all parallel  or ant iparal lel  to a given axis K. t 
This is the si tuat ion which presumably  obtains in 
most ferromagnetic and antifelTomagnetic materials.  
In  this case, b m a y  be replaced by the nuclear struc- 
ture factor 

N = ~ bj exp [ir~. h]:~ (13) 
J 

Parallel and antiparallel q can also be obtained if K 1 
and Kg. make the same angle (not necessarily 90 °) with e and 
if e, K1, and K 2 are coplanar. This is a rather special situation 
unlikely to be met with in practice. 

~: The reciprocal-lattice vector 2:~(ha* +kb*+lc*) has been 
denoted h rather than the usual s to avoid confusion with the 
spin operator s. h is equal to 2:zd*~. 

and p by  the magnetic  structure factor 

M = Z (+p~) exp [ i r e . h ] ,  (14) 
i 

pj being given an negative sign if the spin of the j t h  
ion is ant iparal lel  to the unique K, positive if parallel.  
The formulas for the scattering are more complex if 
the ionic spins do not have a unique axis wi thin  a 
single domain;  this si tuation will be discussed in the  
Appendix.  

The cross-section for scattering from a spin direction 
Zs into a spin direction Z~ is 

a x ~ z ~ "  = I ( z s ] N + 2 M q . s ] z ' D [  2 . (15) 

The total  scattering cross-section for an incident beam 
with spin function Z~ is obtained by summing over 
the spin of the scattered wave 

%~ = ~ [ ( z ~ I N + 2 M q . s ] z ' D I  ~- .* (16) 
X8 t 

Any unpolarized neutron beam m a y  be regarded as a 
superposition in equal amounts  of two beams wi th  
polarization characterized by the functions a and fl 
relative to an arbi t rary  z axis. If  we consider an 
incident beam which is composed entirely of the c~ 
component,  we m a y  write the total scattering cross- 
section for this beam as 

~ = [ ( o ~ ] N + 2 M q . s l ~ ) ] 2 + [ ( c ~ l N + 2 M q . s l f l ) l  2 (17) 

= N 2 + q 2 M 2 + 2 N M q z  (18) 

since the following relations are true- 

(a]q. s]o~)2+ (a]q. s]/9)~ = ~q~, 

(e~lq.sl~) -- ½q~. 
Similarly we find 

(~ = N ~ + q~M 2 -  2 N M q ~ .  

(19) 
(20) 

(21) 

P r i m a r y  e x t i n c t i o n  

I t  has been shown by Goldberger & Seitz (1947) tha t  
the equations for the dynamical  interaction of neu- 
trons are formally the same as those for X-rays  
(Zachariasen, 1945, § I I I ) .  Although the t rea tment  of 
Goldberger & Seitz is applied only to pure nuclear  
reflections, it m a y  be extended to magnetic  and mixed 
reflections by  replacing the nuclear scattering cross- 
section by the combined cross-section involving the 
nuclear magnetic  interaction. The magnetic  scattering 
potent ial  m a y  be t reated formally as being of the same 
type as a nuclear scattering potential  with a form 
factor. 

In  the following, we shall make frequent  use of the 
quan t i ty  

A = 2 to lFI /Vc(~oTB)½,  (22) 

* Summation over the two states, a and fl, is equivalent to 
integration over 0 and ~. 
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where IF[ will be defined as a½, 2 is the neutron wave 
length, t o is the thickness of the perfect crystal being 
considered, Vc is the unit-cell volume, and ?o and ~'H 
are the direction cosines of the incident and diffracted 
beams relative to the normal to the crystal face. This 
value of A may be inserted into the equations given 
by Zachariasen (1945) to determine the diffracted 
intensities in the presence of primary extinction. 
However, in order to apply the equations correctly, 
we must treat each direction of polarization separately, 
as the scattering cross-section and hence A depend on 
the polarization of the incident beam; the resultant 
intensities are then added. Furthermore, the equations 
can be applied in the usual form only if the polarized 
beam under investigation retains the same direction 
of polarization after all scattering processes, i.e., the 
axis along which the spin is analyzed must be such 
as to make the second term in (17) equal to zero:* 

(a[q.sIfl) ~ = 0 .  (23) 

This equation implies the following condition: 

q x = q u = O  and q ~ = q ,  (24) 

i.e., the spin must be analyzed along the direction of q. 
Equations (18) and (21) then reduce to 

o r  

a~ = N ~ + 2 M N q + M ~ q  2 , 

a~ = N g - 2 M N q + M 2 q  2 , I 
(25) 

a~ =- IF+l = ]N + Mq] , 
(26) 

- I F - I  = I N - M q l  . J 

We shall now examine the results of inserting these 
values for IF[ into the equations given by Zachariasen 
(1945). We shall for simplicity in the following develop- 
ment assume that the absorption cross-section is much 
smaller than the scattering cross-section and may 
hence be neglected. This is an adequate approximation 
for many neutron diffraction problems of current 
interest. I t  shall furthermore be assumed that the 
coherently scattering crystal block under considera- 
tion is a single magnetic domain.t 

T h e  equations for the dynamical theory have been 
solved only for infinite flat plates, and it is necessary 
to distinguish two cases: the L a u e  case, in which the 
diffracted beam emerges from the side of the plate 
opposite the entry face, and the B r a g g  case,, in which 
it emerges from the same side. I t  may be noted here 
that  for the symmetrical diffraction condition defined 
by 

* I t  would be interest ing to car ry  th rough  the  theory  of 
dynamica l  scat ter ing for cases where spin flip is allowed, thus  
considering a set of four  coupled waves ra the r  t h a n  two. 
Such a t r e a t m e n t  is necessary,  however,  only if the  ionic spins 
are no t  all parallel  or anti-paral lel  to a unique  direction,  and  
even then  only  in non-cen t rosymmet r ic  s t ruc tures  (see Appen- 
dix). 

The domains  in a mosaic crys ta l  m a y  well be larger t h a n  
the  mosaic blocks. Our assumpt ion ,  which seems plausible, 
is t h a t  t h e y  are in a n y  case no smaller. 

~0 = ~'H 

the factor ( ? o y R )  ½ is equal to sin 0B or cos 0 B for 
the Bragg or Laue case, respectively. We shall con- 
sider in detail only the equations for the symmetrical 
Bragg case.* The integrated intensity for the rotating 
crystal method is given by 

RO _ _ 29]F t tanh A 
Vc sin 20B 

--  kxk2[F[ tanh (kl[F]) 

with 
k 1 = )~ to /V~ sin 0z, 

k~. = 2./2t o cos 0B • 

(27) 

(28) 
(29) 

The following limiting conditions are important: 

R ° ~ k~lc~lF[ ~ if k~[F[ < 1, (30) 

R ° ~ kJc~.]F[ if k~lF[ >> 1. (31) 

We obtain then for the integrated intensities of the 
two polarized components 

R°+ = klk2[F+[ tanh (klIF+]) , (32) 

R ° = k~k~lF_[ tanh (k~IF_l).t (33) 

If the incident polarization is given by 

P0 = ( l -R) / (1  +R) with R = I ~ / I  ~ , (34) 

the primary extinction ratio E~, defined as the actual 
integrated intensity divided by the ideal integrated 
intensity for a ' thin' crystal (30), is found to be 

Ep = IF+[ tanh ( k l ] F + ] ) + R I F _  l tanh(kl]F_l) (35) 
k l ( I F + ] ~ + R I F _ [  ~) 

The valuesof  Ep for an initially unpolarized beam 
(R -- 1) have been calculated and are plotted in Fig. 1 
against 

k l  <~'v2>½ 1 2 --  {~kl (]F+le+iF_]~)}½ (36) 

for several values of ]F_I/ IF+I.$  The most interesting 
feature of these curves is the dependence on the ratio 
IF_]/ iF+I.  I t  is clearly seen that  extinction affects the 
mixed magnetic and nuclear reflections considerably 
more than the pure nut]ear or pure magnetic ref]ec- 

* The equat ions  for the  Laue  case are ident ical  to those 
for the Bragg case if t a n h  A in the expressions below is 
replaced by  

I 
2A oo 

Jo(~)do- ~" J2n+l(2A), 
0 n = O  

where Jn is the  Bessel func t ion  of order n, and  if the ap- 
propr ia te  value for (?0?E)½ is used in the  def ini t ion of A.  

Chandrasekhar  & Weiss (1957) have  recent ly  t abu la t ed  
the  rat io RO_/Rt as a funct ion of A and  M/N in the  approxima-  
t ion t h a t  A t a n h  A "~ A 2 -  ]A a. 

~: Note  t h a t  [F_l/IF+l is equal  to 1 for pure nuclear  or pure 
magnet ic  reflections. 
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tions. The minimum value of the extinction ratio is 
reached for IF_ l = 0, i.e. for N = Mq. 

; '3' I I 

1 "00 

0"80 ~ IF_I 
%\ \  

Ep 

0"40 
0"20 

I 
, I  . I 1 , 3  4 5 0 1 2 k~(F2) ~ 

Fig. 1. P r i m a r y  ex t inc t ion  rat io Ep versus kl(F~}½ = 
{½/c~([F+l=WIF_]2)}½. Bragg diffract ion of unpolar ized in- 
c ident  b e a m  f rom perfect  crys ta l  plate.  Curves are shown 
for several  values of IF_[/IF.I = iN--Mql/IN+Mq[. 

I t  is interesting also to examine the effect of the 
extinction on the polarization of the diffracted beam. 
If the incident beam has a polarization given by P0, 
the diffracted beam will have a polarization 

R o R o IRe ± R  o ( + -  - ) + P o  _ _  ~, + ~  - - /  

P - (RO++R~_)+Po(RO+_Re-) . (37) 

Only if R~ is equal to R e _ (pure nuclear or pure 
magnetic reflection) is the polarization unchanged. 
In :Fig. 2 are plotted values of P against kl<F'~)½ for 

i ~ i i 

/ it+, 

0"8I ~ 0 " 2 0  
? 0 " 6 ~  

0"4 0"50 
0"2~_ 0"75 
0"0 1 "00 

I I 

Fig. 2. Polar iza t ion  of d i f f racted beam versus k I<F ~'>½. Same 
diffract ion condit ions as those for Fig. 1. 

an initially unpolarized beam. The limiting values are, 
of course, for low intensities: 

p = IF+l~-IF-12 (38) 
[F+l~+lF 12 ' 

p _  ]F~]-]F_I 
IF+I + IF_ ] . (39) 

The extinction curves for the Laue case are similar 
to those for the Bragg case with the exceptions tha t  
the limiting intensities are one-half as large and tha t  
the curves of R e against IF] do not rise smoothly but  
fluctuate about the limiting value.* These fluctuations 
are largely smoothed out if one is dealing with a 
mosaic crystal where an average must be made over 
a distribution of mosaic block thicknesses. As neither 
the Laue nor the Bragg case would seem to adequately 
describe the situation obtaining in a real crystal, we 
present here only the results for the Bragg case, as 
these should provide a qualitative picture of the true 
situation. Under actual experimental conditions, we 
probably have an approximately cubic crystallite 
completely immersed in the X-ray or neutron beam 
rather than the idealized infinite flat plates on which 
a smaller beam falls. There is a real need for a treat- 
ment of the dynamical theory of diffraction for more 
realistically shaped crystals. I t  is the author 's view- 
point tha t  the values for the intensity would be 
intermediate between the Bragg case and a smoothed 
Laue case and that  the extinction function for either 
case would give a satisfactory fit to experimental data, 
but with a sui table--and as yet  unknown--redefinit ion 
of scale parameter. That  is, the meaning of to(YoyB)-½ 
- - t h e  average path length-- in  (22) would depend on 
the size and shape of the crystal rather  than on the 
diffraction angle and single dimension alone. 

(a) General consideration 
In essentially all cases of practical interest, we will 

not be dealing with a single, coherently-scattering 
block for which the t reatment  in the preceding section 
is adequate. Rather,  we must consider a real crystal 
as being composed of many individual mosaic blocks, 
each of which will have a reflectivity governed by the 
considerations of the dynamical theory discussed in 
the preceding section. We must distinguish two situa- 
tions, characterized by whether the crystal as a whole 
has a unique axis of magnetization or not, not only 
because of the difference in the average value of q2 
but because of the effect of beam polarization on the 
interaction of the various extinction effects. 

A review of a few of the developments regarding 
secondary extinction may be in order here (see Hamil- 
ton, 1957 and Zachariasen, 1945). I t  is convenient to 
define the reflectivity as 

~" = Q'W(AO),  (40) 

where W(AO) is a distribution function characterizing 
the mosaic structure of the crystal, and Q' is defined as 

Q' = QE,  , (41) 

and for high intensities: * See Zachariasen,  1945, p. 134, for a graph of this  curve.  
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with Ev being the primary extinction correction and 
with Q defined as follows: 

Q = 2aFg/V~ sin 20~. (42) 

for neutrons, and 

Q = ea(l+cos ~ 20)2aF2/2m~c4V~ sin 20s (43) 

for X-rays. One may then write differential equations 
for the power in the incident and diffracted beams in 
terms of a " d n  and a " d m  (and t tdn and t~dm as well 
if absorption is important) where dn and dm are 
elements of length parallel to the incident and dif- 
fracted beams. The integrated diffracted intensity is 
obtained by integrating the power in the diffracted 
beam over the exit surface of the crystal and over the 
mosaic distribution parameter A O. For plane parallel 
crystal plates, we have 

a " d n  = a"dt/~,o , (44) 
a " d m  = (r"dt/~H, J 

where dt is an element of length normal to the plate, 
and consequently in treatments confined to such cases 
(Zachariasen, 1945), the reflectivity can be defined as 

(r R = ( r " / ~  (45) 

for the diffracted beam and 

(r o = a" /V  o (46) 

for the incident beam. For the symmetrical diffraction 
condition, ao is equal to aB. We shall for the most 
part use the definition in (40) for the reflectivity, but 
will also have some occasion to use a as defined in (45) 
and (46). 

(b) Magnet ized mosaic crystal 

If the crystal under consideration is magnetized, 
i.e. has all its domains parallel, the value of q will be 
the same for all mosaic blocks. We may then carry 
out the secondary extinction calculations in the usual 
way* for each polarized component alone and add tbe 
results at the end. For the Bragg case~ we may thus 
write 

t Q+ = Q+ tanh (kl[F+])/k~[F+], (47) 

Q" = Q_ tanh (k~lF_l)/k~lF_l,  (48) 

where Q+ and Q_ are defined as in (42) with the ap- 
propriate values for F ~'. R ° and R °_ are then calculated 

* See Zachar iasen (1945) for the  t r e a t m e n t  of infinite f la t  
plates  and  H a m i l t o n  (1957) for the  extension to crystals  of 
a rb i t r a ry  shape. 

Bragg  case here refers only  to the  di f f rac t ion f rom the  
indiv idual  mosaic block and  no t  necessari ly to the  crys ta l  
i n  toto. This is, we m a y  take  the ideal Bragg case as an ap- 
p rox ima t ion  to the p r imary-ex t inc t ion  condit ions and  app ly  
the  results to an arb i t ra r i ly  shaped crys ta l  in the  secondary-  
ex t inc t ion  calculat ion.  For  a real crystal ,  k 1 should perhaps  
be def ined as propor t ional  to a m e a n  thickness  ra ther  t h a n  to 
t0/sin 0. 

for each of the Q', and the total extinction ratio 
(for an unpolarized incident beam) is given by 

tRO - R o 
E v E s =  ~ + ~ -J ( Q+ + Q_) V ~ /  ' (49) 

where V is the volume of the crystal, and d is a pure 
absorption correction. The secondary extinction ratio 
alone is of course 

R o ± R  o 
A - ~  --J 

Ea = ( Q ' + + Q ' _ ) V d  " (50) 

I t  is easily seen from (50) that, in this case, secondary 
extinction, even in the absence of primary extinction, 
can lead to a higher degree of extinction for mixed 
reflections than for pure nuclear or pure magnetic 
reflections. 

(c) Unmagnetized mosaic crystal: random domains  

If the crystal is not magnetized, the vectors K and q 
will vary from one mosaic block to another. Conse- 
quently we must calculate an (Ev)~ and a correspond- 
Lug a~' for each block.* Although the scattering in each 
mosaic block gives rise to a polarization of the scat- 
tered beam, it is clear that  the average polarization 
at any depth in the crystal, and hence striking any 
layer of mosaic blocks, is zero, for in the ideal un- 
magnetized crystal there are as many domains with 
magnetic axes antiparallel as parallel to a given direc- 
tion. We may then average a~' over all values of K 
and the two directions of polarization to obtain an 
average R ° and a corresponding Ev for the whole 
crystal. Using this Ev, we go through the secondary- 
extinction calculation in the usual way. 

If the crystal possesses unique axes of magnetiza- 
tion, these define the K's over which the average must 
be taken. For the purposes of illustration, we will 
consider a hypothetical case in which the direction of 
K is assumed to be random, and hence all values of q 
in the plane perpendicular to e are equally probable. 
Then we have 

S 
~ 

R-° = ~klk  2 IN~-M sin ~[tanh (k 1LN+M sin T]) sin ~d~ 
0 

f +¼klk~ [N-Ms inTI t anh  (k l lN-Ms in~[ )  sin~ d~ 
0 

and (51) 

Ev  = R°/k~k2(N 2 + 2 / 2 / 3 )  • (52) 

This quantity has been calculated for several values 

* There m a y  possibly be more t h a n  one mosaic block in 
each domain  so t h a t  some neighboring blocks will have  
identical  ~ ' .  However ,  the  t r e a t m e n t  in this  section is no t  
val id if the  domains  are so m u c h  larger t h a n  the  mosaic blocks 
t h a t  there  is appreciable secondary  ex t inc t ion  in a single 
domain .  For  such a case, the  t r e a tmen t s  in this  and  the  
preceding section m u s t  be combined.  T h a t  is, each domain  
should be t rea ted  as a single magne t ized  mosaic crys ta l  and  an  
average then  t aken  over all domains.  
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of N/M. Fig. 3 is a plot of E~ against  the value of E~ 
for a pure nuclear peak of the same ideal calculated 
intensi ty,  i.e., 

Ep(N/M = ~ )  = t anh  (lclJFJ)/lcllFJ. (53) 

The same values are plotted in a perhaps more useful 

way in Fig. 4. The ratio of E~ to Ep for a pure nuclear 
peak is plotted against  the ratio N/M, and curves 
are given for several values of E~(N/M = oo). Here 
again, we see tha t  reflections with magnetic  contribu- 
tions are more seriously affected by p r imary  extinc- 
tion. There is, however, no difference in the way mag- 
netic and nuclear  reflections are affected by secondary 
extinction for this case of the unmagnet ized crystal.  
We have thus an interesting method for determining 
independent ly  the amounts  of p r imary  and secondary 
extinction and, consequently, both the mosaic-spread 
parameter  and the average size of the mosaic blocks. 
If  a crystal  exhibi ts  secondary extinction only, all 
reflections (for a small  range of Bragg angles) can be 
f i t ted to the same secondary-extinct ion curve. If, 
however, we plot I o against  I c for a crystal  which 
exhibi ts  p r imary  ext inct ion as well, we will f ind tha t  
a smooth curve can be drawn through the points 
representing the pure nuclear  reflections, but  tha t  the 
points representing reflections with magnetic  contribu- 
tions will lie below this curve.* The ratio of the cal- 
culated in tens i ty  es t imated from the curve to the 
actual  calculated in tens i ty  is equal to the ratio of the 
p r imary  extinction coefficients" Ep(N/M)/Ep(c~). 
From this ratio and the known value of N/M, we m a y  
find from the curves in Figs. 3 and 4 the actual pri- 
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E~ 

0"40 

0"20 

I I I I 

O.OC i ,, I 
"00 0"80 0"60 0"40 0"20 

E~ (Nuclear) 
Fig. 3. Mean p r imary  ext inc t ion  ratio Ep for mixed  reflections 

versus Ep for pure nuclear  reflection of some ideal cal- 
cula ted in tens i ty .  Unmagne t i zed  mosaic crystal .  Curves are 
shown for several values of INI/IMI, the rat io of the  nuclear  
¢o magnet ic  s t ruc ture  factor.  
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mary  extinction coefficient and hence the value of/¢1 
and t o . Knowing these, we can calculate the amount  of 
p r imary  extinction for each reflection and, by  dif- 
ference, the amount  of secondary extinction and U, 
the mosaic-spread parameter .  

0'75 I 

0"701- 

T I I I W 
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N/M ) 
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• M/N 
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I "00 1 "00 
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Fig. 4. Ep(N/M)/Ep(oO) versus N / M  and M / N .  Curves are 
shown for several values of Ep(oO), the  ext inc t ion  rat io for 
a pure nuclear  reflection. The curves for Ep(c~) < 0-5 lie 
near  to those for Ep(oo) = 0.5, and  only  the  l imit ing curve 
for Ep(c~) = 0 is shown (broken line). These are the  same 
da t a  as those in Fig. 3 p lo t ted  in ano ther  way.  

There m a y  well be some question as to the real 
meaning of t o derived in this way as there is also some 
question to the meaning of U in the theory of secondary 
extinction. Both quanti t ies refer to ideal models which 
are not l ikely to be realized in practice, i.e., t o derived 
in this way is no more the ,true' thickness of a mosaic 
block than  is U the s tandard deviat ion of a real one- 
parameter  angular  distr ibution function. However, 
both quanti t ies  should have a great deal of meaning  
when they  are compared from crystal to crystal. If  U 
is larger, the crystal is less perfect; if t o is larger, the 
average dimensions of the scattering domains are 
larger. 

P r e c e s s i o n  o f  t h e  n e u t r o n  s p i n  

We have not yet  considered one factor which 
affect some of the preceding conclusions. This is the 
precession of the neutron spin around the magnetic  
axis as the neutron beam passes through the crystal.  

* There m a y  be some spread of the  nuclear reflections 
f rom the  curve due to the  fact  t h a t  the  angle factors involved 
in the expressions for p r imary  and secondary ext inc t ion  differ, 
the  exact  form of the difference depending on the  shape 
assumed for the  mosaic blocks. For  quan t i t a t ive  ext inc t ion  
est imates,  one m u s t  be careful to t ake  this into account ,  
preferably by  comparing intensit ies of reflections wi th  ap- 
proximate ly  the same Bragg angle. 
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The polarization relat ive to K will of course not  be 
affected by this precession, bu t  since we have been 
discussing polarization relative to q, some modifica- 
tions must  be made. If a neutron with velocity v has 
an ini t ial  spin funct ion X*, it will have, after having  
gone a distance r through a homogeneous magnet ic  
field H, the spin funct ion 

, ( cor cor) 
Zs = cos ~vv + 2 i K "  s sin 2v Z8 (54) 

with the Larmor  precession f requency co being given by  

co = yneH/Moc.  (55) 

In  part icular ,  for ;/~ = ~, i.e., a = 1, b = 0, we have 

, (  ¢or i K cor) 
Z~= coS~-v + ~sin~vv ~ 

( . cot cor) 
+ - K u  sm ~v + iKx sin ~v fl (56) 

and  thus  

co?" • 2 COT [ 
[a'[ 9" ---- cose~-V-v +KzP sm ~-v ' 

(57) 
[b,l ~ 2 e • e cor = (Ky+K~) sm ~ . 

2v 

Similar ly,  for Xs-= fl, i.e., a - - 0 ,  ]b[ = 1, we have 

Y,~ I ( i K x + Ku ) sin cojv ] [ (or co_ rv ] ' = a +  cOS~vv- iKzs in  fl 

and (58) 

la,12 
2 e cor = (Ky+Kx) sin 9 -  

2v ' 

cor- 2 • 9 cor 
[b'l~ = c°s2 2vv +K~ sm ~ . 

(59) 

We would like now to have these expressions in terms 
of q. Remember ing  tha t  in the previous sections the 
z axis has been chosen to lie along the direction of q, 
we f ind 

e e q2 . ( 6 0 )  Kx+K~ = 1 - q  e, K~ = 

Equat ions  (57) thus  become 

2 co?" 2 cor 
]a'l e -- cos ~vv + q sinP' 2v  ' 

• e coT 
[b']" = ( l - q  e) sm 2v " 

(61) 

Equat ions  (59) reduce to equations identical  to (61) 
but  with an interchange of [a' I and [b']. 

Let  us first examine  the magni tude  of this effect. 
:For the most unfavorable  case, qO = 0, the percentage 
change in the polarization is sin e (cor/2v). If we wish 
the  change in polarization to be less t han  5 %, we must  
have 

sin e (o~r/2v) < 0.05, (cor/2v) < 0-224. (62) 

Now, for neutrons with a 1 A wavelength,  we f ind 

(cor/2v) = 2.31 × lO-eHr. (63) 

Subst i tut ing (63) in (62), we f ind tha t  

Hr < 10 cm. gauss (64) 

is the necessary condition for the change in polariza- 
tion to be less than  5 %. For m a n y  of the exper iments  
commonly  carried out with ferromagnetic materials ,  
H will be of the order of 104. The implied condition 

r < 10 -a cm. (65) 

would seem to be satisfied for the mosaic-block size 
in most  crystals. In  other words, within an individual  
mosaic-block, we m a y  safely neglect the effect of the  
precession on the polarization and extinction. Fur ther-  
more, in an unmagnet ized  single crystal  with random 
orientat ion of domains,  there will be no net  effect. 
The only case, then,  where the conclusions of the 
preceding sections m a y  need modif icat ion is the case 
of a magnet ized single mosaic crystal.* 

Let  us first consider the case of no secondary ex- 
t inction. The precession has  no effect on the  total  
scattered in tens i ty ;  there is, however, a profound effect 
on the polarization of the scattered beam. If we con- 
sider a plane parallel  crystal  plate  of thickness T, 
with the polarization of the scattered wave from each 
mosaic-block being given by  P0, the polarization of 
the scattered beam from the  entire thickness of the 
crystal is given by  

Po Y~ t fT/r~COS 9 cor mr P = T v0 2v + (2q~- 1) sin 2 2vv dr 

p 0 [ S ~  - - - x + q ~ ( 1  sinX)x 1 = - . ,  (66) 
J 

with 
x = eoT/y~V.  (67) 

Fig. 5 shows P/Po as a funct ion of x for several values 
of q2. Note tha t  this  ratio approaches q~ as x approaches 
infini ty.  

The analysis  becomes more complex if secondary 
ext inct ion is present. Neglecting absorption, we m a y  
write the power equations for symmetr ica l  diffraction 
from infinite f lat  plates as follows ::~ 

d~+°-dt a + ( ~ - ~ + ) I 1 - B s i n ~  w2-~y] 

cot 
- a -  ( ~  - ~ )  B s i n  e - -  

2vy 
coB . cot 

- ( 2 a  - 1 ) ~ s m  v y  ( 6 8 )  

* Large domains  in crys ta ls  wi th  no ne t  magne t iza t ion  are 
included in this descript ion.  

t Y here and  in the  following is the  direct ion cosine of the  
sca t te red  wave ,  n o t  the  neu t ron  spin. 

:~ B is defined as 1 - -q  2. ~ H  and ~ 0  are the  powers  of the  
dif f racted and incident  beams,  the  superscr ip ts  referring to the  
polar izat ion directions,  a is defined in (45) and (46). 2 a - - 1  is 
the  initial polarizat ion.  

A 0 11 41 
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dt (Bragg) = - a + ( ~ + - ~  +) 1 - B  sin 2 w ( T - t )  
2vy 

- a - ( ~ 5 -  ~ # ) B  sin ~ w( T - t )  2vy ' (69) 

var ia t ion of intensi ty as a function of x m a y  be 
observed• The period of this var ia t ion m a y  be used 
to est imate  the  internal  field in the  crystal.  In  inter- 
preting any experiment,  of course, one must  be careful 
to take into consideration any  magnetic  sa tura t ion  
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0"00 

- 0"20 

Iq12 j 

\ A  ooo 
2.~ ~./,4.~ ~../6:'z: 8;~ 

~ /  X e.,, 
V = Y---J 

Fig. 5. Depolar izat ion of sca t te red  wave  due to precession of 
n e u t r o n  spin in magne t i zed  f la t -pla te  mosaic  crysta l  which  
exhibi ts  no secondary  ext inct ion.  Curves give rat io of final 
polar izat ion (P) to polar izat ion (P0) def ined by  the  scat- 
ter ing f rom the  individual  mosaic  blocks. Abscissa is 
x = o ) T / ~ ' R v .  The curves,  which  are given for several values 
of q2, f luc tua te  abou t  a l imit ing value of q2. 
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Fig. 6. Solutions of equation (71) for B -- 1. Each curve is 
normalized to unity for x = 0. 

curve t h a t  might  be applicable to the par t icular  
si tuation. 

• ~ o ~ t \  

dt 
• ~ . o g t  

+ a - ( ~ - 6 - ~ ) B  sm ~ , (70) 

with analogous equations for ~ and ~ .  The solution 
of these equations is tedious, and  a detailed discussion 
will be reserved for a future paper• Only the results 
for one par t icular  simple example will be presented 
here to indicate tha t  the  effects are not  trivial.  For  the 
Laue case with a = {, a -  = 0, we obtain 

~+~ + ~ 

~o+(o)+~(o) 

The value of this function for B = 1" normalized to 
un i ty  for x = 0 is plot ted in Fig. 6 as a function of 
x = wT/vy  for several values of a+T. Note  t ha t  the 
general effect is an enhancement  of intensi ty over tha t  
to be expected for x = 0. In  certain situations, a 

* This does no t  correspond to a real physical  s i tuat ion,  
as it  is impossible for a -  and  q to bo th  be equal  to zero. The  
general  behavior  is the  same, however ,  for o ther  values of B.  

Summary 
l .  In  an unmagnet ized mosaic crystal,  more severe 

extinction for reflections with magnetic contributions 
can only be due to p r imary  extinction. One can thus  
easily determine relative amounts  of p r imary  and  
secondary extinction. 

2. In  a magnet ized mosaic crystal,  both p r imary  and 
secondary extinction are more severe for mixed 
nuclear -magnet ic  reflections. I f  extinction is severe, 
precession of the neutron spin m a y  be impor tan t  in 
determining the  intensity.  

3. Total  extinction effects for a par t icular  crystal  
model m a y  be calculated in the following way :  

(a) Subst i tute  IF+I and IF_I into (27) or correspond- 
ing equation for the Laue case to obtain R°+ and R ° _ for 
a single mosaic-block. Make this calculation for every 
value of q if a mult i -domain mosaic crystal  is to be 
t reated.  

(b) For  a magnetized mosaic crystal  (or a single 
domain in an unmagnet ized crystal  if secondary 
extinction within the  domain is likely to be severe), 
use/~0 and R ° _ from (a) to calculate (E~)+ and (E~)_ + 

t l  t l  

and consequently a+ and a .  Carry out secondary- 
extinction calculations for each of these separately 
and add final in tegrated intensities. 
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(c) For an unmagnet ized  crystal  with small  random 
domains,  average R~_ or R ° _ from (a) over all values 

of q to obtain an average R ° for the individual  

mosaic blocks. Use this R ° and resulting Ev to define 
a "  as in (40-41) and proceed to make a single secon- 
dary  ext inct ion calculation for the entire crystal. 

Many of the results developed in this  paper  have 
been exper imenta l ly  verified by  the author  on the 
single crystal  of magnet i te  previously ment ioned and 
by  polarized beam exper iments  carried out by  Dr 
C. G. Shull and Dr Rober t  Na thans  (private commu- 
nication). Details of the applications of this  paper  will 
be given in forth-coming papers dealing with the 
individual  experiments.  The author  would like to 
express his appreciation to Dr Nathans ,  Dr L. M. Cor- 
liss, and Dr J.  M. Hast ings for helpful discussions and 
to Mr David Langdon for assistance in carrying out 
the numerical  calculations. 

A P P E N D I X  

The scattered wave funct ion for a structure composed 
of several magnetic  ions m a y  be wri t ten 

v2H = (27~Mo/hk)½r - t  exp [ikr] 
[ ~  bj exp [ir j .  h] + 2 ~ p jq j .  s exp [ir~. h]] Xs, (72) 

/ ] 

and the  scattering cross-section for an incident wave 
with polarization direction X m a y  be writ ten 

a~ = N 2 + 2N ~ p~ q¢. X exp [ir~. h] 
] 

+.~.~ ,p¢p~q¢.q~  exp [ i ( r~ - r~ ) .h ]  (73) 
/ k 

with the nuclear  structure factor defined as 

N = Z bj exp [ i r j .  h i  . (74) 
i 

Clearly, if all the  qj are parallel  or antiparallel  and 
of the same magni tude  

qs = + q ,  (75) 
we m a y  write 

(h = N2+ 2 N M q . ~ + q  2M~ (76) 

if the magnet ic  structure factor M is defined as 

M = ~ ± p j  exp [ i r j .  h] (77) 
/ 

with the + or - sign chosen according as qj is parallel  
or ant iparal lel  to q. If  (75) and (76) are valid, then 
all the  equations for a complete structure m a y  be 
obtained from those for a single ion by replacing b 
and p by N and M. I t  is interesting to compare the 
expressions for the cross-sections derived from (73) 
and (76) for the case of a random orientation of do- 

mains  with respect to the scattering vector. We find 
tha t  (76) reduces to 

= N g . +  ( ~ ) M  9 , 

while (73) for the general case reduces to 

a = N2+ (-~) Z.,Y, pjp~ cos fljk exp [ i ( r j - r ~ ) .  h ] ,  (78) 
i k 

where fljz is the angle between Kj and K~. 
In  our t r ea tment  of p r imary  extinction, we have  

required tha t  the spin be analyzed along a unique 
axis chosen so tha t  no spin flip due to scattering occurs: 

(alq.s]f l)  2 = 0 .  (79) 

The condition corresponding to (79) for the general 
case of non-parallel  spins is 

[Zp~(a [q j . s l f l )  exp [ i r j .h ) ] ]  2 = 0 
o r  ~' 

[Z, p~(qj)x exp [ i r j .h ] ]  e + [ ~  P~(qJ)u exp [ i r l .  h]] 2 = 0 
J J (80) 

since 
(alq.s[f l )  = ½(q~,-iqu). (81) 

We m a y  set the second term in (80) equal to zero 
merely by  choosing the y axis to be parallel  to E, 
and the x and z axes consequently in the scattering 
plane, which also contains all the qj. Thus we mus t  
find an axis in the plane such tha t  the first term in 
(80) vanishes. This implies tha t  both the following 
conditions be satisfied: 

~" pj (qj)x cos (rj. h) = 0 ,  (82) 
i 

~,P~(qj)x sin ( r j .h )  = 0 .  (83) 
i 

Both these equations can in general be satisfied only 
if the magnetic  structure is centrosymmetric,* in which 
case (83) is satisfied because of the symmetry .  A 
unique x axis in the plane can then be found which 
causes (82) to be satisfied. If  (qj)x' and (qj)~ are the 
components of qj relat ive to an arb i t ra ry  set of axes 
x '  and z', a new set of axes x and z given by 

x = x ' c o s 0 + z ' s i n 0 ,  z =  - x ' s i n 0 + z ' c o s 0  (84) 

will cause (82) to be satisfied if 

~,pj(qj)x, cos ( r j .h )  

t a n 0  = - / . (85) 
.,Y,P~(qj)z, cos ( r j .h )  
i 

Equat ion  (73) then becomes 

* This  does  n o t  m e a n  t h a t  t he  spin  is reversed  t h r o u g h  
invers ion  a t  t he  origin,  b u t  r a t h e r  t h a t  on  invers ion  one 
ob t a in s  an  iden t ica l  a t o m  w i t h  the  sp in  in the  s ame  d i rec t ion .  
The  m a g n e t i c  s t r u c t u r e s  of s imple  f e r r o m a g n e t i c  a n d  an t i -  
f e r r o m a g n e t i c  c o m p o u n d s  are genera l ly  c e n t r o s y m m e t r i c ;  
indeed  m o s t  of t h e m  wou ld  seem to sa t i s fy  the  m o r e  s t r i n g e n t  
r e q u i r e m e n t  of h a v i n g  para l le l  a n d  an t i -para l l e l  spins.  

41 * 
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a~ = N~ +2N.a~ T~(ql)~ cos ( r t . h )  

+~y, ~Y,p~p~:(q~)~(q~:)~ cos [ ( r ~ - r  D . h ] ,  (86) 

or 
~/~ = lEvi = N+~Y,p~(q~)~cos ( r t .h )  , (87) 

i 

with (q~)z being the z component  of q~ relative to the 
new set of axes:  

(q~)~ = - (q~)~, sin 0 + (q~)~, cos 0 (88) 

I n  all of the  previous discussion in this paper,  we m a y  
then  make  the  formal  subst i tut ion 

MIq[ -- ~, p~(q~)z cos ( r~ .h ) .  (89) 
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The structure of the Roussinate ion, FedS a (N0)~-, has been determined from the Cs + and K + salts. 
The unit-cell parameters of the Cs + salt are 

a---- 9.5~, b---- 9.7 a, c---- 10.I 2~k, c¢-~ 112.8 ° , fl---- 103.5 ° , ? : 96-5°; 

and the space group is P i .  The isolated ion has approximately C3v symmetry,  with a tetrahedral 
arrangement of Fo, and 3 S above the centers of three faces. All FeNO groups are roughly linear, 
and no NO bridges occur. Average distances are F e I ( a p e x ) . . .  Fe~----- 2.70 /~, F e r [ ' - "  Ferr = 
3"57 /k, Fe-S = 2.23 A, FeI--N ---- 1.57 A, F e ~ = N  = 1.67 ]k, N = O  ---- 1.20 /~. Our preferred 
electronic structure has 4 non-bonding electrons on each Fe, and one electron pair in a highly 
delocalized molecular orbital among the 4 Fe atoms, thus accounting for the diamagnetism and 
the high absorption coefficient. 

I n t r o d u c t i o n  

A prerequisite to any  valence theory  of the black 
Roussinate ion FedS3(NO)~" is its s t ructure  determina- 
tion, repor ted here. The chemical evidence for various 
proposed s tructures  has been summarized by  Addison 
& Lewis (1955), who list Seel's (1942) proposal based 
on the  FeS s t ructure  and on Manchot & Linckh's  
(1926) early proposal of the  ([(NO)2FeS]3Fe(NO)}- 
~ormula; but  Addison & Lewis, as well as e~rlier 
authors,  have proposed similar s tructures in which 
NO bridges occur. None of the electronic interpreta-  
tions of these proposed s tructures  have accounted for 
the observed diamagnet ism (Cambi & SzegS, 1931). 
I t  seems probable tha t  the electronic interactions 
giving rise to this d iamagnet ism are sufficiently weak 
to account also for the intense transit ions to low-lying 
electronic levels which are indicated by the high ex- 
t inction coefficient of this ion. A prel iminary discus- 
sion of the valence s t ructure  is therefore included as 

a pa r t  of this s t ructure  determinat ion by  the  X - r a y  
diffraction method.  

E x p e r i m e n t a l  p r o c e d u r e  

The K salt and Na  salt were prepare:l  from NaNO~, 
K[-IS (KOI-I+tt2S) and FeS04 by the mgthod of 
Pawel (1882). The Cs salt  was obtained by the ad- 
dition of Cs~SO 4 to a solution of the Na  s~lt. 

A crystal  of the Cs salt h~ving dimensions 
0.15 × 0.15 × 0.05 mm. was photographe=l with Y[oK~ 
radiat ion at  a precession angle of 25 ~ in the Bacessera.  
Although the linear absorption coefficient is 62 cm. -1, 
no corrections for absorption or extinction were made.  
The 14~:3 obsvrved reflections were obtained from the 
hOl; hll; h2,t; h31; ht~; 0h/; I/d; 2/c/; 3/c/; 4?¢~; 2h,h,1; 
2h+l,fz,1; h,h,l; h-l,fz,1; h,-2h,l; h,2h,1; hh~, h+l,h,l;  
and h+2,h,l reciprocal lattice plan~s. For  the K salt, 
a to ta l  of 209 h0! and 0/cl reflections were estim~te~. 

The crystals  were triclinic with cell pa ramete rs  


