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Results arising from the treatment of magnetic scattering of neutrons, taking due account of the
possibility of polarization of the neutron beam, indicate that the usual expressions for primary
and secondary extinction must be modified in certain cases. Extinction, particularly primary
extinction, will be generally more severe for reflections which have both nuclear and magnetic
contributions than for either pure nuclear or pure magnetic reflections. Formulas and curves are
presented for primary and secondary extinction corrections which are applicable to both mag-
netized and unmagnetized ferromagnetic or antiferromagnetic crystals. Some of the results obtained
may be conveniently used to determine relative amounts of primary and secondary extinction,
and consequently both mosaic block size and angular distribution. Many of the calculations are of
interest in predicting the effects of extinction on experiments designed either to produce or use
polarized neutron beams.

The precession of the neutron polarization axis about the magnetic axis can affect the reflected
intensity if extinction is severe. This effect is discussed briefly and is shown to be serious only for
magnetized crystals.

The appendix discusses the necessary changes in the scattering formulas if all the spins in the
unit cell do not lie along a unique magnetic axis.

Introduction

In a recent paper (Hamilton, 1957) the author has
discussed secondary extinction corrections for crystals
of arbitrary geometrical cross-section. In the example
which was chosen to illustrate some of the points
discussed in that paper—a synthetic single crystal of
magnetite which showed particularly severe extinction
—it, was noted that several of the reflections which
had large magnetic contributions did not give as good
a fit to the extinction curves as did the pure nuclear
reflections. An empirical extinction curve was found
to give a satisfactory fit to the observed intensities of
the nuclear reflections, but the intensities of many of
the mixed reflections were considerably lower than
this curve would predict. This lowered intensity could
not be accounted for by any reasonable changes in
the parameters describing the magnetic structure, nor
in the form factor and saturation curves. Preliminary
considerations indicated that this behavior could be
explained by a combination of polarization and ex-

* Research performed under the auspices of the U.S.
Atomic Energy Commission.

tinction effects, and the present paper is a detailed
elaboration of that point of view.

Following Halpern & Johnson (1939), we may write
the wave function for the incident neutron beam as

wo = (2 M o[hk)} exp [tKk.r]ys, (1)

where k is the wave vector 2aP/A with P the neutron
momentum, r is a position vector, M is the neutron
mass, and ys is the neutron spin function. The scat-
tered wave from a single oriented magnetic ion may
then be represented by

vr = (27Mo[hk)tr— exp [ikr](b+pQ.-8)xs»  (2)
provided that there is no change in the spin state of
the scattering ion. The nuclear and magnetic scat-
tering amplitudes are given by b and p respectively
with p defined as

p = (EyaS/mc)f . (3)

Here y, is the neutron magnetic moment in nuclear
magnetons, S is the spin of the scattering ion, m is
the mass of the electron, f is a form factor, and ¢ and e



586
have the usual meanings. The spin operator s has the
following properties:

Sz = (1/2)8, syx = (i/2)f, S:0 = (1/2)x, } @)
szf = (1/2)x, syf = —((/2)ex, 8.8 = —(1/2)8 ,

where « and § are the eigenfunctions of s,. Note that
any spin function may be described as

xs = ax+bf (5)
with complex a and b such that y, is normalized:
la|2+16]2 = 1. (6)

No generality is lost by taking a to be real, and we
shall do so. The polarization direction corresponding
t0 s is defined by the polar angles 0 and gs satisfying

cot (36s) = |al/lb] , )
tan @s = (b—b%)/c(b+b%*) . (8)

Note that we may also write
cos 05 = |a|2—b]2= P, (9)

where P is defined as the polarization (relative to the
z axis). This may also be written as

P = (Ia—Iﬁ)/(1a+1ﬁ) H (10)

where I, and I are the intensities of the two beam
components with polarization directions corresponding
to « and B. The magnetic interaction vector q is
defined by
q = g(e.K)-K, (11)
where €, the scattering vector, is a unit vector per-
pendicular to the scattering plane and K is a unit
vector in the ionic spin direction, i.e., the magnetiza-
tion direction. Note that q lies in the plane of € and K,
and is orthogonal to €. The magnitude of q is given by
g* =sin? 7, (12)
where 7 is the angle between & and K.

Equation (2) and the following equations may also
be interpreted as applying to a structure containing
many magnetic ions provided that q remains the same
or only changes sign for all ions, i.e., the ionic spins
are all parallel or antiparallel to a given axis K.t
This is the situation which presumably obtains in

most ferromagnetic and antiferromagnetic materials.
In this case, b6 may be replaced by the nuclear struc-
ture factor

N = 3bjexp [iry.h]f (13)
j

+ Parallel and antiparallel q can also be obtained if K,
and K, make the same angle (not necessarily 90°) with ¢ and
if ¢, K,, and K, are coplanar. This is a rather special situation
unlikely to be met with in practice.

1 The reciprocal-lattice vector 2s(ha* -+ kb* +Ic*) has been
denoted h rather than the usual s to avoid confusion with the
spin operator s. h is equal to 2nd*e.
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and p by the magnetic structure factor

M = 2 (£ps) exp [ir;.h], (14)
i belng given an nega,tlve sign if the spin of the jth
ion is antiparallel to the unique K, positive if parallel.
The formulas for the scattering are more complex if
the ionic spins do not have a unique axis within a
single domain; this situation will be discussed in the
Appendix.

The cross-section for scattering from a spin direction
s into a spin direction y; is

Oys—> x5 = |(XS|N+2M(]-S|Z;)|Z- (15)

The total scattering cross-section for an incident beam
with spin function ys is obtained by summing over
the spin of the scattered wave

0y = S (N +2Mq 5|3 * (16)

Xs

Any unpolarized neutron beam may be regarded as a
superposition in equal amounts of two beams with
polarization characterized by the functions « and B
relative to an a.rbltrary z axis. If we consider an
incident beam which is composed entirely of the «
component, we may write the total scattering cross-
section for this beam as

G, = [(oclN+2Mq.s|oc)|2+|(oe|N+2Mq.s]ﬁ)|2 (17)
= N24 @22 2N Mg, (18)

since the following relations are true:

(alq-sla)2+(alq.s[B)? = ig?, (19)
(x|q.sla) = 3¢ . (20)

Similarly we find
op = N2+q2M?*—-2N My, . (21)

Primary extinction

It has been shown by Goldberger & Seitz (1947) that
the equations for the dynamical interaction of neu-
trons are formally the same as those for X-rays
(Zachariasen, 1945, § I1I). Although the treatment of
Goldberger & Seitz is applied only to pure nuclear
reflections, it may be extended to magnetic and mixed
reflections by replacing the nuclear scattering cross-
section by the combined cross-section involving the
nuclear magnetic interaction. The magnetic scattering
potential may be treated formally as being of the same
type as a nuclear scattering potential with a form
factor.

In the following, we shall make frequent use of the

quantity
A = M|F|[Velyoya)? »

* Summation over the two states, « and f, is equivalent to
integration over 6 and ¢.

(22)
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where |F| will be defined as o%, 4 is the neutron wave
length, ¢, is the thickness of the perfect crystal being
considered, V. is the unit-cell volume, and y, and yy
are the direction cosines of the incident and diffracted
beams relative to the normal to the crystal face. This
value of 4 may be inserted into the equations given
by Zachariasen (1945) to determine the diffracted
intensities in the presence of primary extinction.
However, in order to apply the equations correctly,
we must treat each direction of polarization separately,
as the scattering cross-section and hence 4 depend on
the polarization of the incident beam; the resultant
intensities are then added. Furthermore, the equations
can be applied in the usual form only if the polarized
beam under investigation retains the same direction
of polarization after all scattering processes, i.e., the
axis along which the spin is analyzed must be such
as to make the second term in (17) equal to zero:*

(x|lg.s|B)2=0. (23)
This equation implies the following condition:
9:=q,=0 and ¢ =g, (24)

i.e., the spin must be analyzed along the direction of q.
Equations (18) and (21) then reduce to

o, = N2+2MNqg+ M2, } (25)
op = N2—2MNg+ M3q?, .
or
of = |Fy| = |[N+Mq| }
« ’ 26
ag =|F_| = |N-—Mq|. (26)

We shall now examine the results of inserting these
values for |F| into the equations given by Zachariasen
(1945). We shall for simplicity in the following develop-
ment assume that the absorption cross-section is much
smaller than the scattering cross-section and may
hence be neglected. This is an adequate approximation
for many neutron diffraction problems of current
interest. It shall furthermore be assumed that the
coherently scattering crystal block under considera-
tion is a single magnetic domain.7

The equations for the dynamical theory have been
solved only for infinite flat plates, and it is necessary
to distinguish two cases: the Laue case, in which the
diffracted beam emerges from the side of the plate
opposite the entry face, and the Bragg case, in which
it emerges from the same side. It may be noted here
that for the symmetrical diffraction condition defined

by

* It would be interesting to carry through the theory of
dynamical scattering for cases where spin flip is allowed, thus
considering a set of four coupled waves rather than two.
Such a treatment is necessary, however, only if the ionic spins
are not all parallel or anti-parallel to a unique direction, and
even then only in non-centrosymmetric structures (see Appen-
dix).

+ The domains in a mosaic crystal may well be larger than
the mosaic blocks. Qur assumption, which seems plausible,
is that they are in any case no smaller.
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Yo = Vu

the factor (y,yg)? is equal to sin 6z or cos 6y for
the Bragg or Laue case, respectively. We shall con-
sider in detail only the equations for the symmetrical
Bragg case.* The integrated intensity for the rotating
crystal method is given by

RO A*|F| tanh 4
Vg sin 203
= k,k,|F| tanh (k,|F|) (27)
with
kl = }I,to/Vc Sin 03 y (28)
ky = A2ty cos G . (29)
The following limiting conditions are important:
RO~ K2k |F12 if Ky|F| < 1, (30)
RO~ ke ko | if Ey|F| > 1. (31)

We obtain then for the integrated intensities of the
two polarized components

RS, = kyly/F | tanh (ky[F, ), (32)
RY. =k k,|F_| tanh (k,|F_|) .T (33)

If the incident polarization is given by
Py= (1-R)/(1+R) with R=1IF[I*, (34)

the primary extinction ratio E,, defined as the actual
integrated intensity divided by the ideal integrated
intensity for a ‘thin’ crystal (30), is found to be

_|F, | tanh (k| F,])+ RIF_| tanh (ky|F_|)
by (PP T RIF_H

E, . (35)

The values of E, for an initially unpolarized beam
(R = 1) have been calculated and are plotted in Fig.1
against

k(P2 = (JR(F, P+ | P (36)
for several values of |F_|/|F,|.1 The most interesting
feature of these curves is the dependence on the ratio
|F_|/|F.]. It is clearly seen that extinction affects the
mixed magnetic and nuclear reflections considerably
more than the pure nuclear or pure magnetic reflec-

* The equations for the Laue case are identical to those
for the Bragg case if tanh A in the expressions below is
replaced by

24 (el
1\ "o = 3 Tz,
0 n=0

where J, is the Bessel function of order n, and if the ap-
propriate value for (ypym)? is used in the definition of A.
+ Chandrasekhar & Weiss (1957) have recently tabulated
the ratio RB_/R?{_ as a function of A and M/N in the approxima-
tion that A tanh A ~ A2— }A44,
1 Note that [F_|/|F | is equal to 1 for pure nuclear or pure
magnetic reflections.



588

tions. The minimum value of the extinction ratio is
reached for |F_| = 0, i.e. for N = Myq.

1-00

0-80

Fig. 1. Primary extinction ratio Ej, versus k,(F2)} =
{3K2(|F |2+ |F_|*)}%. Bragg diffraction of unpolarized in-
cident beam from perfect crystal plate. Curves are shown
for several values of |F_[/|F,| = |[N—Mq|/|N+ Mq|.

It is interesting also to examine the effect of the
extinction on the polarization of the diffracted beam.
If the incident beam has a polarization given by P,
the diffracted beam will have a polarization

_ (RG—R%)+Py(RS+RY)
P = E+r)+p, 1) " (37)

Only if R% is equal to R% (pure nuclear or pure
magnetic reflection) is the polarization unchanged.
In Fig. 2 are plotted values of P against k,{(#%)? for

P
04 0-50 ]
0 2_ 0-75 n
00 1-00
1 1 1 1
0 2 6 8
ki (F*)?

Fig. 2. Polarization of diffracted beam versus &, (F?)}. Same
diffraction conditions as those for Fig. 1.

an initially unpolarized beam. The limiting values are,
of course, for low intensities:

P P—E

=_F 38
AT (38)

and for high intensities:
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_ I -1F

AT A (39)

The extinction curves for the Laue case are similar
to those for the Bragg case with the exceptions that
the limiting intensities are one-half as large and that
the curves of R against |F| do not rise smoothly but
fluctuate about the limiting value.* These fluctuations
are largely smoothed out if one is dealing with a
mosaic crystal where an average must be made over
a distribution of mosaic block thicknesses. As neither
the Laue nor the Bragg case would seem to adequately
describe the situation obtaining in a real crystal, we
present here only the results for the Bragg case, as
these should provide a qualitative picture of the true
situation. Under actual experimental conditions, we
probably have an approximately cubic crystallite
completely immersed in the X-ray or neutron beam
rather than the idealized infinite flat plates on which
a smaller beam falls. There is a real need for a treat-
ment of the dynamical theory of diffraction for more
realistically shaped crystals. It is the author’s view-
point that the values for the intensity would be
intermediate between the Bragg case and a smoothed
Laue case and that the extinction function for either
case would give a satisfactory fit to experimental data,
but with a suitable—and as yet unknown—redefinition
of scale parameter. That is, the meaning of ¢(yoyg)~?
—the average path length—in (22) would depend on
the size and skape of the crystal rather than on the
diffraction angle and single dimension alone.

Secondary extinction

(@) General consideration

In essentially all cases of practical interest, we will
not be dealing with a single, coherently-scattering
block for which the treatment in the preceding section
is adequate. Rather, we must consider a real crystal
as being composed of many individual mosaic blocks,
each of which will have a reflectivity governed by the
considerations of the dynamical theory discussed in
the preceding section. We must distinguish two situa-
tions, characterized by whether the crystal as a whole
has a unique axis of magnetization or not, not only
because of the difference in the average value of ¢?
but because of the effect of beam polarization on the
interaction of the various extinction effects.

A review of a few of the developments regarding
secondary extinction may be in order here (see Hamil-
ton, 1957 and Zachariasen, 1945). It is convenient to
define the reflectivity as

o' = Q'W(40), (40)

where W (A0) is a distribution function characterizing
the mosaic structure of the crystal, and @' is defined as

Q =QEp, (41)

* See Zachariasen, 1945, p. 134, for a graph of this curve.
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with F, being the primary extinction correction and
with @ defined as follows:

Q = A3F?|V2sin 205 . (42)
for neutrons, and
Q = et(l+cos? 20)13F2[2m2cA V2 sin 205  (43)

for X-rays. One may then write differential equations
for the power in the incident and diffracted beams in
terms of ¢’dn and ¢”dm (and udn and udm as well
if absorption is important) where dn and dm are
elements of length parallel to the incident and dif-
fracted beams. The integrated diffracted intensity is
obtained by integrating the power in the diffracted
beam over the exit surface of the crystal and over the
mosaic distribution parameter 46. For plane parallel
crystal plates, we have

o’dn = ¢"dt|y, , }

44
¢"dm = ¢"'dt[yg, (44)
where dt is an element of length normal to the plate,
and consequently in treatments confined to such cases
(Zachariasen, 1945), the reflectivity can be defined as

Og = G'”/yH (45)
for the diffracted beam and
G0 = 0" [y (46)

for the incident beam. For the symmetrical diffraction
condition, ¢, is equal to gz. We shall for the most
part use the definition in (40) for the reflectivity, but
will also have some occasion to use ¢ as defined in (45)
and (46).

(b) Magnetized mosaic crystal

If the crystal under consideration is magnetized,
i.e. has all its domains parallel, the value of ¢ will be
the same for all mosaic blocks. We may then carry
out the secondary extinction calculations in the usual
way* for each polarized component alone and add the
results at the end. For the Bragg case} we may thus

write
Q4 = @, tanh (k| F,|)/k | F, |,
Q. = Q_tanh (k,|F_|)/k/|F_|,

(47)
(48)

where @, and @_ are defined as in (42) with the ap-
propriate values for F2. R% and R’ are then calculated

* See Zachariasen (1945) for the treatment of infinite flat
plates and Hamilton (1957) for the extension to erystals of
arbitrary shape.

1 Bragg case here refers only to the diffraction from the
individual mosaic block and not necessarily to the crystal
4n toto. This is, we may take the ideal Bragg case as an ap-
proximation to the primary-extinetion conditions and apply
the results to an arbitrarily shaped crystal in the secondary-
extinction calculation. For a real crystal, k, should perhaps
be detgned as proportional to a mean thickness rather than to
ty/sin 6.
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for each of the @', and the total extinction ratio
(for an unpolarized incident beam) is given by

(R%.+RY)

Bl = ooV’

(49)

where V is the volume of the crystal, and &7 is a pure
absorption correction. The secondary extinction ratio
alone is of course
(R%.+R%)
Eg = T T AT 1 7
(RQL+Q)Ve

It is easily seen from (50) that, in this case, secondary
extinction, even in the absence of primary extinction,
can lead to a higher degree of extinction for mixed
reflections than for pure nuclear or pure magnetic
reflections.

(50)

(¢) Unmagnetized mosaic crystal: random domains

If the crystal is not magnetized, the vectors K and q
will vary from one mosaic block to another. Conse-
quently we must calculate an (¥,); and a correspond-
ing o; for each block.* Although the scattering in each
mosaic block gives rise to a polarization of the scat-
tered beam, it is clear that the average polarization
at any depth in the crystal, and hence striking any
layer of mosaic blocks, is zero, for in the ideal un-
magnetized crystal there are as many domains with
magnetic axes antiparallel as parallel to a given direc-
tion. We may then average o; over all values of K
and the two directions of polarization to obtain an
average R° and a corresponding E, for the whole
crystal. Using this Ep, we go through the secondary-
extinetion calculation in the usual way.

If the crystal possesses unique axes of magnetiza-
tion, these define the K’s over which the average must
be taken. For the purposes of illustration, we will
consider a hypothetical case in which the direction of
K is assumed to be random, and hence all values of q
in the plane perpendicular to & are equally probable.
Then we have

- iklkzs |N -+ M sin z[tanh (&, |N -+ M sin 7]) sin 7dv
0

+ 1k ky §0 |N — M sin z|tanh (k, |N — M sin 7|) sin 7 dv
) (51)
(62)

and .
E, = R K3k, (N2+2M2[3) .

This quantity has been calculated for several values

* There may possibly be more than one mosaic block in
each domain so that some neighboring blocks will have
identical o;’. However, the treatment in this section is not
valid if the domains are so much larger than the mosaic blocks
that there is appreciable secondary extinction in a single
domain. For such a case, the treatments in this and the
preceding section must be combined. That is, each domain
should be treated as a single magnetized mosaic crystal and an
average then taken over all domains.
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of N/M. Fig. 3 is a plot of E, against the value of E,
for a pure nuclear peak of the same ideal calculated
intensity, i.e.,

Ep(N|M = oo) = tanh (k,|F|)[k,|F|.  (53)

The same values are plotted in a perhaps more useful

way in Fig. 4. The ratio of E, to E, for a pure nuclear
peak is plotted against the ratio N/M, and curves
are given for several values of Ep(N/M = o). Here
again, we see that reflections with magnetic contribu-
tions are more seriously affected by primary extinc-
tion. There is, however, no difference in the way mag-
netic and nuclear reflections are affected by secondary
extinction for this case of the unmagnetized crystal.
We have thus an interesting method for determining
independently the amounts of primary and secondary
extinction and, consequently, both the mosaic-spread
parameter and the average size of the mosaic blocks.
If a crystal exhibits secondary extinction only, all
reflections (for a small range of Bragg angles) can be
fitted to the same secondary-extinction curve. If,
however, we plot I, against I; for a crystal which
exhibits primary extinction as well, we will find that
a smooth curve can be drawn through the points
representing the pure nuclear reflections, but that the
points representing reflections with magnetic contribu-
tions will lie below this curve.* The ratio of the cal-
culated intensity estimated from the curve to the
actual calculated intensity is equal to the ratio of the
primary extinction coefficients: E,(N/M)/Ep(co).
From this ratio and the known value of N/M, we may
find from the curves in Figs. 3 and 4 the actual pri-

T T T T
1400
0801 N .
M
(o o]
2
060 72 —
_ 1
Ep
040+ -
020}~ -
0-00 | 1 ] 1
100 0-80 060 040 020

Ep (Nuclear)

Fig. 3. Mean primary extinction ratio K for mixed reflections
versus E—p for pure nuclear reflection of some ideal cal-
culated intensity. Unmagnetized mosaic crystal. Curves are
shown for several values of |N|/| M|, the ratio of the nuclear
to magnetic structure factor.
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mary extinction coefficient and hence the value of k&
and t,. Knowing these, we can calculate the amount of
primary extinction for each reflection and, by dif-
ference, the amount of secondary extinction and 7,
the mosaic-spread parameter.

Ep(°°)
1-00 1-00
095 0+95 |
0-90 7,
W /4
090 \\\ / -
- : 0-825 4
s ' 4
N \ o §
~ |~ \ 0+75 /
W \ /
080~ \ / .
1000,/
0+75} N .
0-50
0-70}- -
L
T 1 L 1 1 1 1 ]
0 0°50 100 2:00 %0
- | NM— L
00 400 133 075 025 0
<~ M/N

Fig. 4. Ep(N|M)|Ep(c0) versus N/M and M|N. Curves are
shown for several values of E,(c0), the extinction ratio for
a pure nuclear reflection. The curves for Ep(co) < 0-5 lie
near to those for E;(c0) = 0-5, and only the limiting curve
for Ep(oco) = 0 is shown (broken line). These are the same
data as those in Fig. 3 plotted in another way.

There may well be some question as to the real
meaning of ¢, derived in this way as there is also some
question to the meaning of % in the theory of secondary
extinction. Both quantities refer to ideal models which
are not likely to be realized in practice, i.e., ¢, derived
in this way is no more the ,true’ thickness of a mosaic
block than is # the standard deviation of a real one-
parameter angular distribution function. However,
both quantities should have a great deal of meaning
when they are compared from crystal to crystal. If 5
is larger, the crystal is less perfect; if ¢, is larger, the
average dimensions of the scattering domains are
larger.

Precession of the neutron spin

We have not yet considered one factor which will
affect some of the preceding conclusions. This is the
precession of the neutron spin around the magnetic
axis as the neutron beam passes through the crystal.

* There may be some spread of the nuclear reflections
from the curve due to the fact that the angle factors involved
in the expressions for primary and secondary extinction differ,
the exact form of the difference depending on the shape
assumed for the mosaic blocks. For quantitative extinction
estimates, one must be careful to take this into account,
preferably by comparing intensities of reflections with ap-
proximately the same Bragg angle.
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The polarization relative to K will of course not be
affected by this precession, but since we have been
discussing polarization relative to q, some modifica-
tions must be made. If a neutron with velocity v has
an initial spin function ys, it will have, after having
gone a distance r through a homogeneous magnetic
field H, the spin function

, wr . . wr
2o = (cos 2 +2¢K.ssin %> xs (54)

with the Larmor precession frequency w being given by
w = yneH|Myc . (65)

In particular, for ys = &, ie.,, a =1, b6 = 0, we have

’ wr ., . wr
s = cos%—Jrszsm% o

L wr .. . r

+ (~Ky sm%—+zK¢ sin %) g (56)
and thus
ﬂ+K§ sinz ,

a’|?2 = cos?
la' 2v 20

(87)
, . QT
1b']2 = (K3+K3) sng .

Similarly, for ys= g, ie., a =0, [b| =1, we have

4= [(iK,,JrK,,) sin “’—’} ot [cos;u—:—iKz sin 91"} B

2v 20
and (58)
@'f® = (K3 + K sin® s~
(59)
n2 — ool L K2 sin2 2"
5] cos® o +K? sin %

We would like now to have these expressions in terms
of q. Remembering that in the previous sections the
z axis has been chosen to lie along the direction of q,
we find

K:+K2=1-¢% KI=¢. (60)
Equations (57) thus become
la’|? = coszg +¢? sin2~2w—; ,
(61)

n2 — 2 1 2(0—7'
[6']2 = (1—¢3) sin oy
Equations (59) reduce to equations identical to (61)
but with an interchange of |a’| and |b’|.

Let us first examine the magnitude of this effect.
For the most unfavorable case, ¢2 = 0, the percentage
change in the polarization is sin? (wr/2v). If we wish
the change in polarization to be less than 59%,, we must
have

sin? (er/2v) < 0-05,

AcC11

(wr/20) < 0224 . (62)
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Now, for neutrons with a 1 A wavelength, we find

(wr/2v) = 2-31 x 10—2Hr . (63)
Substituting (63) in (62), we find that
Hr < 10 cm. gauss (64)

is the necessary condition for the change in polariza-
tion to be less than 59%. For many of the experiments
commonly carried out with ferromagnetic materials,
H will be of the order of 104 The implied condition

(65)

would seem to be satisfied for the mosaic-block size
in most crystals. In other words, within an individual
mosaic-block, we may safely neglect the effect of the
precession on the polarization and extinction. Further-
more, in an unmagnetized single crystal with random
orientation of domains, there will be no net effect.
The only case, then, where the conclusions of the
preceding sections may need modification is the case
of a magnetized single mosaic crystal.*

Let us first consider the case of no secondary ex-
tinction. The precession has no effect on the total
scattered intensity ; there is, however, a profound effect
on the polarization of the scattered beam. If we con-
sider a plane parallel crystal plate of thickness 7',
with the polarization of the scattered wave from each
mosaic-block being given by P,, the polarization of
the scattered beam from the entire thickness of the
crystal is given by

_ Pyygt (T
p - 2e¥s S

o
sin x sin z
= P 21—
o[ (157

z=owT[ygV.

r < 10-3 cm.

2 W7 202 —1) si 2_(0_7‘d
cos2v+(q ) sin 99

(66)
with
(67)

Fig. 5 shows P[P, as a function of x for several values
of ¢2. Note that this ratio approaches g2 as  approaches
infinity.

The analysis becomes more complex if secondary
extinction is present. Neglecting absorption, we may
write the power equations for symmetrical diffraction
from infinite flat plates as follows:}

APy

CT0 _ _ (P _pry|1— 2&]
7 ot (P} H)[l Bsin S0y

(P~ — P-\B sin2 2L
0~ (P5—Pz)B sin S0y

B
—@a—1) 28 gin @ (68)
20y vy

* Large domains in crystals with no net magnetization are
included in this description.

+ 9 here and in the following is the direction cosine of the
scattered wave, not the neutron spin.

1 B is defined as 1—¢%. 2y and Pp are the powers of the
diffracted and incident beams, the superscripts referring to the
polarization directions. ¢ is defined in (45) and (46). 2x—1 is
the initial polarization.
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Fig. 5. Depolarization of scattered wave due to precession of
neutron spin in magnetized flat-plate mosaic crystal which
exhibits no secondary extinction. Curves give ratio of final
polarization (P) to polarization (P,) defined by the scat-
tering from the individual mosaic blocks. Abscissa is
x = wT|ygv. The curves, which are given for several values
of g2, fluctuate about a limiting value of g%

iP5

7H (Laue) = o+ (P~ P) (1_3 sin? &‘)

2vy

to-(P5—P7)Bsinz 2L | (70)
2vy

with analogous equations for &5 and 2. The solution

of these equations is tedious, and a detailed discussion

will be reserved for a future paper. Only the results

for one particular simple example will be presented

here to indicate that the effects are not trivial. For the

Laue case with &« = 4, 6— = 0, we obtain
.@g+.@§_
ZE0)+25(0)
otT ! B sin &
=" Soexp [20+T§ <§ {1—75—} —lﬂ dé. (71)

The value of this function for B = 1* normalized to
unity for z = 0 is plotted in Fig. 6 as a function of

= @T /vy for several values of ¢*7'. Note that the
general effect is an enhancement of intensity over that
to be expected for x = 0. In certain situations, a

* This does not correspond to a real physical situation,
as it is impossible for ¢~ and ¢ to both be equal to zero. The
general behavior is the same, however, for other values of B.
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variation of intensity as a function of z may be
observed. The period of this variation may be used
to estimate the internal field in the crystal. In inter-
preting any experiment, of course, one must be careful
to take into consideration any magnetic saturation

1+50
1440
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T 1 001
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T

1-021-

1+01 | 1 1 1 | L.
2 4 () 8 10 12 14

X=wT/yyV

Fig. 6. Solutions of equation (71) for B = 1. Each curve is
normalized to unity for x = 0.

curve that might be applicable to the particular
situation.

Summary

1. In an unmagnetized mosaic crystal, more severe
extinction for reflections with magnetic contributions
can only be due to primary extinction. One can thus
easily determine relative amounts of primary and
secondary extinction.

2. In a magnetized mosaic crystal, both primary and
secondary extinction are more severe for mixed
nuclear-magnetic reflections. If extinction is severe,
precession of the neutron spin may be important in
determining the intensity.

3. Total extinction effects for a particular crystal
model may be calculated in the following way:

(@) Substitute [F',| and |F_]| into (27) or correspond-
ing equation for the Laue case to obtain R% and R® for
a single mosaic-block. Make this calculation for every
value of q if a multi-domain mosaic crystal is to be
treated.

(b) For a magnetized mosaic crystal (or a single
domain in an unmagnetized crystal if secondary
extinction within the domain is likely to be severe),
use RS and R® from (a) to calculate (Ey), and (Ep)_
and consequently o/, and ¢'. Carry out secondary-
extinction calculations for each of these separately
and add final integrated intensities.
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(¢) For an unmagnetized crystal with small random
domains, average R% or R® from (a) over all values

of q to obtain an average R® for the individual

mosaic blocks. Use this B? and resulting Ej to define
¢’ as in (40-41) and proceed to make a single secon-
dary extinction calculation for the entire crystal.

Many of the results developed in this paper have
been experimentally verified by the author on the
single crystal of magnetite previously mentioned and
by polarized beam experiments carried out by Dr
C. G. Shull and Dr Robert Nathans (private commu-
nication). Details of the applications of this paper will
be given in forth-coming papers dealing with the
individual experiments. The author would like to
express his appreciation to Dr Nathans, Dr L. M. Cor-
liss, and Dr J. M. Hastings for helpful discussions and
to Mr David Langdon for assistance in carrying out
the numerical calculations.

APPENDIX

The scattered wave function for a structure composed
of several magnetic ions may be written

wy = (2nMfhk) 1 exp [ikr]
[Z b; exp [ir;.h]+2 X p;q;.8 exp [ir;.h]])xs, (72)
/ ]

and the scattering cross-section for an incident wave
with polarization direction A may be written

g; = N2+2N 3 p;q;.A exp [ir;.h)]
i

+ Z%‘Pﬂ’k‘h-qrc exp [¢(r;—rx).h] (73)
<

with the nuclear structure factor defined as

N = Xbjexp [ir;.h]. (74)
j

Clearly, if all the q; are parallel or antiparallel and
of the same magnitude
Q= +q, (75)

we may write

0, = N2+ 2NMq. A+ g2 M2 (76)

if the magnetic structure factor M is defined as

M = X +p;exp [ir;.h] (77)
i
with the + or — sign chosen according as qy is parallel
or antiparallel to q. If (75) and (76) are valid, then
all the equations for a complete structure may be
obtained from those for a single ion by replacing b
and p by N and M. It is interesting to compare the
expressions for the cross-sections derived from (73)
and (76) for the case of a random orientation of do-
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mains with respect to the scattering vector. We find
that (76) reduces to

o= N2+ (3)M2,
while (73) for the general case reduces to

o = N2+ (§) 2 2 pspr cos B exp [i(r;—ri).h], (78)
ik

where S is the angle between K; and Kj.

In our treatment of primary extinction, we have
required that the spin be analyzed along a unique
axis chosen so that no spin flip due to scattering occurs:

(xlq.s|p)* = 0. (79)

The condition corresponding to (79) for the general
case of non-parallel spins is

[2 pi(xlas-s|B) exp [ir;. h)]]2 = O
]

or
[ Pilas)s exp [ir. W]+ [ py(ay exp [irs. A]J = 0
7 7
. (80)
simce
(*]9.818) = }(ge—igy) . (81)

We may set the second term in (80) equal to zero
merely by choosing the y axis to be parallel to g,
and the X and z axes consequently in the scattering
plane, which also contains all the q;. Thus we must
find an axis in the plane such that the first term in
(80) vanishes. This implies that both the following
conditions be satisfied:

2Pi(¢s)z cos (r;.h) =0, (82)
Y

2 pi(@)asin (r;.h) = 0. (83)
7

Both these equations can in general be satisfied only
if the magnetic structure is centrosymmetric,* in which
case (83) is satisfied because of the symmetry. A
unique X axis in the plane can then be found which
causes (82) to be satisfied. If (g;),- and (g;), are the
components of q; relative to an arbitrary set of axes
x’ and z’, a new set of axes X and z given by

X =Xxcos0+2z' sinfh, z= —X"sin6+2" cos (84)
will cause (82) to be satisfied if
2 i@ cos (r7.h)

tan § = — - .
. 2 pi(g5) cos (r;.h)
7

(85)

Equation (73) then becomes

* This does not mean that the spin is reversed through
inversion at the origin, but rather that on inversion one
obtains an identical atom with the spin in the same direction.
The magnetic structures of simple ferromagnetic and anti-
ferromagnetic compounds are generally centrosymmetric;
indeed most of them would seem to satisfy the more stringent
requirement of having parallel and anti-parallel spins.
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oz = N2+2N2pj(qj)z cos (r;.h)
i
+2 %‘ P5Px(91)=(qx)z cos [(rj—r1x).h], (86)
7

or

0} = |Fe| = N+ X ps(gs): cos (rs.h),  (87)
i

with (g;). being the z component of q; relative to the

new set of axes:
(¢5): = —(q5)ar sin 04 (gs)=r cOs 6 . (88)

In all of the previous discussion in this paper, we may
then make the formal substitution

Acta Cryst. (1958). 11, 594
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Mgl = 2 ps(gs): cos (r;.h) . (89)
7
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The Structure of Roussin’s Black Salt, CsFe,S;(NO),.H,0

By Groreg JoHANSsON AND Wimnriam N. Liescoms
School of Chemistry, University of Minnesota, Minneapolis 14, Minnesota, U.S.A.

(Received 31 October 1957)

The structure of the Roussinate ion, Fe,S;(NO);, has been determined from the Cst and K+ salts.
The unit-cell parameters of the Cs* salt are

a =958 b=97, c=101, A, x =112:8°, § = 103-5°, y = 96-5°;

and the space group is PI. The isolated ion has approximately Cj, symmetry, with a tetrahedral
arrangement of Fe, and 3 S above the centers of three faces. All FeNO groups are roughly linear,
and no NO bridges occur. Average distances are Fey(apex) - - - Ferr = 2-70 A, Fer- -+ Fopg =
3-57 A, Fe-S = 223 A, Fer=N = 1:57 A, Fe=N = 1:67 A, N=0 = 1-20 A. Our preferred
electronic structure has 4 non-bonding electrons on each Fe, and one electron pair in a highly
delocalized molecular orbital among the 4 Fe atoms, thus accounting for the diamagnetism and

the high absorption coefficient.

Introduction

A prerequisite to any valence theory of the black
Roussinate ion Fe,S3(NO)7 is its structure determina-
tion, reported here. The chemical evidence for various
proposed structures has been summarized by Addison
& Lewis (1955), who list Seel’s (1942) proposal based
on the FeS structure and on Manchot & Linckh’s
(1926) early proposal of the {[(NO),FeS];Fe(NO)}-
formula; but Addison & Lewis, as well as earlier
authors, have proposed similar structures in which
NO bridges occur. None of the electronic interpreta-
tions of these proposed structures have accounted for
the observed diamagnetism (Cambi & Szegd, 1931).
It seems probable that the electronic interactions
giving rise to this diamagnetism are sufficiently weak
to account also for the intense transitions to low-lying
electronic levels which are indicated by the high ex-
tinction coefficient of this ion. A preliminary discus-
sion of the valence structure is therefore included as

a part of this structure determination by the X-ray
diffraction method.

Experimental procedure

The K salt and Na salt were prepared from NaNO,,
KHS (KOH+H,S) and FeSO, by the method of
Pawel (1882). The Os salt was obtainzd by the ad-
dition of Cs,80, to a solution of the Na salt.

A crystal of the Cs salt having dimensions
0:15x0-15x0:05 mm. was photographed with Mo Kx
radiation at a precassion angle of 25° in the Bucessera.
Although the linear absorption cosfficient is 62 cm.™1,
no corrections for absorption or extinction were made.
The 1443 obssrved reflections were obtained from the
ROL; h1l; h2L; 3L h4l; OKl; LkL; 2kl; 3kI; 415 2h,4,1;
Sh+ VAL BAL; h—1,A1; h2h,1; h,2h,1; Rl h+1,k,1;
and A +2,h,! reciprocal lattice planss. For the K salt,
a total of 200 20! and OkI reflections were estimated.

The crystals were triclinic with cell parameters



